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An investigation is made of 4 and 5-colourings of the plane showing in each 

case that certain configurations cannot occur if no two points unit distance 

apart are to be allowed the same colour. This leads to a proof of the 

(known) result that every 5-coloured planar map contains two points of the 

same colour unit distance apart. 
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The minimum number of colours, m, needed to colour all the points in the Euclidean plane such 

that no two points unit distance apart are the same colour is still an unsolved problem, although it 

is known that 4  m  7 (see [1] and [2]). Woodall[3] proves that an infinite planar map requires at 

least six colours, but it is still not known whether seven are necessary. 

 

It is convenient to introduce the term MONOCHROME UNIT to refer to a pair of points in E2 unit 

distance apart having the same colour. This paper investigates 4 and 5-colourings of E2 and 

shows that if no monochrome units are to occur then certain elementary configurations must be 

excluded. These results are then used to prove that every 5-coloured map in the plane contains a 

monochrome unit, so confirming the result of Woodall[3]. 

 

Woodall's proof makes use of an assertion that any simply connected Jordan region[4] containing 

an arc of the unit circle with length L greater than or equal to ⅔π must contain a monochrome unit 

if a map is constructed in its interior and each domain of the map is coloured one of two colours. 

Unfortunately it is possible to construct a counter example for the case L=⅔π. 

 

Let A be the closed annulus bounded by the circles |x|=1 and |x|=1-h, where 0<h<1, 

and let R be the closed subset of A subtended by the angle ⅔π at the origin. The interior R0 of R 

is, according to Woodall's definition, an interior arc of positive thickness. Let a, b and c be the 

end-points and mid-point respectively of the segment of |x|=1 which bounds R. Let e be the 

arc of unit radius centre a which cuts |x|=1 at c and divides R0 into two disjoint regions S and 

T, where a lies on the boundary of S. R may be 2-coloured as follows: colour a red; colour S and 

the remainder of its boundary, including e, blue; colour T and its boundary, excluding e red. 

Clearly R contains no monochrome units, and so neither does its interior R0. 

 

Woodall uses the case L=⅔π to prove that every 5-coloured planar map which contains a vertex 

of degree 3 must contain a monochrome unit. In the light of the above counter example his 

theorem, although correct, requires a more careful proof. 

 

In order to proceed further the following definitions are required. 

 

DEFINITION 1 

Let S and T be subsets of E2. S is said to subtend T at unit distance if T is the union of all unit 

circles centred on points in S. 

 

DEFINITION 2 

Let A be any closed, bounded doubly connected set in E2 containing the unit circle. If the removal 

of any point in A renders A simply connected then such a point is called a cut point of A. If A has 

no cut points its interior A0 is said to be a unit annulus. If A has a finite number of cut points (which 

must occur on the unit circle) then A0 is said to be a finitely disconnected unit annulus. 

 

DEFINITION 3 

A planar map is an ordered pair M(S,B) where S is a set of mutually disjoint bounded finitely 

connected open sets (regions) in E2 and B is a set of simple closed curves (frontiers) in E2 

satisfying 

(i) the union of the members of S and B forms a covering of E2; 

(ii)  a one-to-one function F:SB such that b = F(s), sS, is the exterior boundary of s; 
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(iii) the boundary of sS is the union of F(s) and at most a finite number of other members of 

B, which are the interior boundaries of s. 

A point on the boundary of s is called a boundary point of s. A boundary point which lies on the 

boundary of k regions, k3, is called a vertex of degree k. A closed subset of a frontier bB 

which is bounded by two vertices and contains no other vertices is called an edge of each region 

for which b is part of the boundary. Two regions are adjacent if their boundaries contain a common 

edge or a common frontier. 

 

The above definition is more general than the usual definition of a planar map (see, for example, 

[3]) which requires each region sS to be simply connected, and requires each frontier bB to 

contain at least two vertices. 

 

DEFINITION 4 

An r-colouring of a planar map is a function Cr:E2{c1,c2,…,cr} where Cr is constant 

over each region in S and where a boundary point is given the colour of one of the regions in the 

closure of which it lies. 

 

To prove that an r-coloured map must contain a monochrome unit it is sufficient to examine only 

those r-coloured maps satisfying 

(i) each region has no interior boundaries, i.e. its closure does not contain the closure of any other 

region; 

(ii) different regions of the same colour have no common boundary points. 

This is best understood by observing that every r-coloured map with no monochrome units may be 

simplified to an r-coloured map with no monochrome units satisfying (i) and (ii) above as follows. 

(a) For each region s with interior boundaries, remove these boundaries and assimilate into s 

all regions whose closures are contained in the closure of s. 

(b) Remove any edges common to adjacent regions of the same colour. 

(c) For each vertex v which is a boundary point of two non-adjacent regions of the same colour, 

choose >0 sufficiently small and describe an -neighbourhood whose closure contains v 

and whose intersection with each of the two regions is non-null, colouring this -

neighbourhood the same colour as the two regions, and thus forming one new region 

incorporating the original two and the -neighbourhood. 

 

A sequence of theorems now follows, concluding with the main result of this paper that every 5-

coloured planar map contains a monochrome unit. 

 

THEOREM 1 

Let A0 be a finitely disconnected unit annulus (see Definition 2) for which the unit circle contained 

in its closure, A, has at least one segment of length greater than ⅓π containing no cut points of A. 

Then any 2-colouring of A0 contains a monochrome unit. 

 

LEMMA 

Let γ be any simple arc[4] of length  containing at least two points unit distance apart. If γ 

is 2-coloured with no monochrome units then given >0  an -neighbourhood in γ 

containing a point of each colour. 
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Proof 

There exist two points x1 and y1 in γ, not both the same colour, with |x1-y1|=1. Let 

>0 be given. The following algorithm uses the method of bisection[5] to prove the lemma. 

1. Set i=1. 

2. Let wi be the point in γ mid-way (by arc-length) between xi and yi. 

3. If the colours of wi and xi are not the same then put xi+1=xi and yi+1=wi 

otherwise put xi+1=wi and yi+1=yi. 

4. If |xi+1-yi+1| increase i by 1 and re-cycle from 2, 

 otherwise stop. 

 

The algorithm terminates in not more than n cycles, where 2n>. 

 

Proof (Theorem 1) 

Suppose A can be 2-coloured with no monochrome units. There exists an infinite family  of 

simple closed curves intersecting one another only at the cut points of A, each, apart from the cut 

points of A, lying entirely within A0, and for each of which there is a segment of finite length 

containing two points unit distance apart not separated by a cut point. This segment contains, for 

any given >0, an -neighbourhood in which lies a point of each colour (by the lemma). Let γ1 

be such that every point on γ1 in A0 is unit distance from at most one of the cut points of A (clearly 

only a finite number of points are unit distance from two or more of the cut points of A, and γ1 may 

be chosen to avoid all those that lie in A0). 

 

Now we can find (0,1) such that for every (0,)  an -neighbourhood on γ1 in A0 

containing a point of each colour and containing at most one point which is unit distance from a cut 

point of A. Let x and y be points of each colour in such an -neighbourhood, and suppose x is 

unit distance from a cut point, c, of A. 

 

Let γ2.  an arc  in A0 of unit radius and centre x which intersects γ1 at x’ and γ2 at x” 

(neither of which is a cut point of A), and  an arc  in A0 of unit radius and centre y which 

intersects γ1 at y’ and γ2 at y” (again neither of which is a cut point of A).  and  are chosen 

such that x’ and y’ are further from c than from x and y respectively (by arc-length along γ1). 

 

Let P and Q be sets subtended at unit distance by  and  respectively. P and Q are 

disconnected annuli, each having one cut point at x and y respectively, and each intersecting A0 

in a band of finite width between γ1 and γ2. Let these bands be respectively P’ and Q’. Q’ 

may be considered to be the image of P’ under a homeomorphism T which depends on |x-

y|. Defining d(P’,Q’) = sup{|p-T(p)|:pP’} we have d(P’,Q’)0 as 

|x-y|0; in this sense we say P’Q’ as |x-y|0. There must then exist >0 such 

that for |x-y|<, P’Q’0. But P’Q’ must be coloured differently to both x and y, and 

so A0 must be 3-coloured at least.  

 

Using this result it is possible to exclude two configurations from any 4-colouring of E2 without 

monochrome units, and show as a natural consequence that any 4-coloured map in E2 contains a 

monochrome unit. 
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THEOREM 2 

Let E2 be 4-coloured. If for some distinct x and y  two simple arcs with endpoints x and y each, 

excepting the endpoints, being monochrome but not both the same colour, then E2 contains a 

monochrome unit. 

 

Proof 

Let the two simple arcs be  and . If |x-y|>1 then both  and  contain a monochrome unit. If 

|x-y|1then the intersection of the sets subtended at unit distance by  and  (excluding the 

endpoints) is a disconnected annulus with at most two cut points. This annulus is 2-coloured, and 

so by Theorem 1 contains a monochrome unit. 

 

THEOREM 3 

If a 4-colouring of E2 contains two differently coloured, bounded, open connected monochrome 

sets with a common segment of boundary of finite length, then E2 contains a monochrome unit. 

 

Proof 

Let E and F be two such sets, and let x and y be two distinct points on the common segment of 

boundary. Because the closure of E is a simply connected Jordan region,  a simple arc  with 

endpoints x and y which, apart from its endpoints, lies in E[4]. There exists a similar arc  in F. By 

Theorem 2 E2 contains a monochrome unit. 

 

Corollary 

Every 4-coloured planar map contains a monochrome unit. 

 

A similar result involving three sets can be proved for 5-colourings of E2, and again the 

consequence is that every 5-coloured planar map contains a monochrome unit, but this requires 

careful proof. 

 

THEOREM 4 

If a 5-colouring of E2 contains three disjoint, differently coloured, bounded, open, connected, 

monochrome sets each having two or more common boundary points with each of the other two, 

and all three having one common boundary point, then E2 contains a monochrome unit. 

 

Proof 

Let v be the boundary point common to all three sets and let a1, a2 and a3 respectively be 

boundary points common to each pair of sets. We assume these points are distinct and not more 

than one unit from each other.  simple closed curves γ1 coloured c1 containing v, a1 and a2, 

γ2 coloured c2 containing v, a1 and a3, and γ3 coloured c3 containing v, a2 and a3, where in 

each case the colouring refers to every point on the curve with the possible exception of the points 

v, a1, a2 and a3. Let P be the intersection of the sets subtended at unit distance by γ1, γ2 and 

γ3, excepting the points v, a1, a2 and a3. P is either a unit annulus or a finitely disconnected unit 

annulus with at most three cut points. P satisfies the requirements of Theorem 1, and since it is 2-

coloured (viz. not c1, c2 or c3) it must contain a monochrome unit. 

 

Corollary 

Every 5-coloured planar map containing a vertex of degree 3 contains a monochrome unit. 

 

THEOREM 5 

Every 5-coloured planar map contains a monochrome unit. 
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Proof 

We show (i) that every 5-coloured planar map with no monochrome units contains a vertex of 

degree 3 or 4 and (ii) that every such map containing a vertex of degree 4 also contains a vertex of 

degree 3. 

(i) Let v be any vertex in a 5-coloured planar map with no monochrome units. Let γ be the 

boundary of one of the regions which has v as a boundary point, and let a and b be two other 

points on γ. There is a simple closed curve γ1 passing through v, a, and b all the points of 

which, except possibly v, a, and b, are coloured c1. There is a simple closed curve γ2 

passing through a, and v all the points of which, except possibly a, and v, are coloured c2, 

and there is a simple closed curve γ3 passing through b, and v all the points of which, except 

possibly b, and v, are coloured c3. Let T2 be the intersection of the sets subtended at unit 

distance by γ1 and γ2 and let T3 be the intersection of the sets subtended at unit distance by 

γ1 and γ3. The interiors of T2 and T3, T20 and T30 respectively, are unit annuli each 

rendered simply connected by at most one cut point, and so by Theorem 1 cannot be 2-

coloured. T20 must contain regions coloured c3, c4 and c5, and T30 must contain regions 

coloured c2, c4 and c5. The interior of T1 = T2T3 is a 4-coloured unit annulus. There is a 

vertex in T10 which must be of degree 3 or 4. If not then there must be edges in T1 which cut 

T1 (rendering it simply connected) without intersecting any other edges. This is only possible if 

these edges separate regions coloured c4 and c5, except possibly those edges which 

contain the cut points of T2 and T3 (if these exist). But then T1 contains a 2-coloured unit 

annulus with no more than two cut points, and must therefore by Theorem 1 contain a 

monochrome unit. 

 

(ii) Let v be a vertex of degree 4 - if none exists then the proof is completed. Let a, b, c and d 

be points on the four edges incident to v, and let c1, c2, c3 and c4 be the colours of the four 

regions of which v is a boundary point. There are four simple closed curves γ1, γ2, γ3 and 

γ4, each of which contains v and exactly two of {a, b, c, d}, the points on each curve 

being coloured respectively c1, c2, c3 and c4 except possibly the points v, a, b, c and d. 

Let the order of the γi be chosen such that γ2 and γ4 have only the point v in common. 

 

 Let Ti, i=1..4, be the intersection of sets subtended at unit distance by γj, j=1..4, 

ji, and let T = Ti. The interior of T, T0, is a unit annulus, centre v, and every boundary 

point of a region in T0 is a boundary point of at most three regions. Suppose none of these 

boundary points is a vertex. Then there exist edges which cut T (rendering it simply 

connected), some of which cut either both of T1 and T3 or both of T2 and T4. It is possible for 

an edge to cut T and only cut one of T1 and T3 or one of T2 and T4, but such an edge must 

intersect the unit circle centre v at one of at most four points, these points being the cut points 

of the finitely disconnected annuli which are the interiors of T1T2 and T3T4. There must 

be edges cutting T which intersect the unit circle centre v at points other than these four. This 

implies there are two regions with different colours each of which has points in both T1 and T3 

or both T2 and T4. But the only colour common to both T1 and T3 or both T2 and T4 is c5. 

So we arrive at a contradiction. Hence there must be vertices in T0, and these are of degree 

3. 

 

By theorem 4 every 5-coloured map contains a monochrome unit. 
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